Bringing Snowflake Intelligence to Life: Practical Lessons from the Field

Learn how Hakkoda helps enterprises unlock Snowflake Intelligence with trusted semantics, smart agents, and real business impact.
November 20, 2025
Share

As Snowflake Intelligence (now in GA) begins making its way into the hands of data teams, business users, and AI leaders, Hakkoda is already busy helping client enterprises get the most out of its capabilities.  

As one of Snowflake’s chosen launch partners, Hakkoda has had a front-row seat to the platform’s early capabilities, requirements, and real-world impact.  

The following engagement offers a first look at what Snowflake Intelligence can deliver today when it is configured with the right patterns, the right context, and the right partnership. 

Building Snowflake Intelligence the Right Way 

Hakkoda recently partnered with a global performance apparel brand to bring natural-language access to one of their most valuable datasets. The goal: to empower business users to have a conversation with their data without waiting on dashboards, tickets, or analysts. 

What unfolded was a real-life proving ground for the practical foundations that make Snowflake Intelligence successful. At the heart of the solution was a Snowflake Cortex Agent built on top of multiple core datasets. Through Snowflake Intelligence, users could ask everyday questions in plain English, and the agent would respond with clear, data-backed insights. 

To achieve reliable performance, Hakkoda configured a Snowflake Cortex Analyst with the right semantic context: the definitions, relationships, synonyms, and metrics that reflect how the business actually speaks and works. Without that foundation, even the best model risks inconsistent or hallucinated responses. With it, AI becomes a dependable partner. 

Snowflake’s semantic views played a central role. They allowed our team to encode business context in a structured, version-controlled format. This ensured the agent understood everything from column meanings to join logic to how different teams refer to the same concept. And because the client used dbt, Snowflake’s native dbt package made it seamless to manage semantic views through automated CI/CD, keeping them in sync with the underlying data. 

The Power of Iteration and Real User Feedback 

Snowflake Intelligence provides built-in feedback tools that allow AI teams to tune responses based on real-world interactions. Hakkoda used this signal to continuously refine prompts, semantics, and agent behavior throughout the engagement. 

The result? More than 95% user satisfaction in both answer quality and accuracy by the end of the engagement. 

That kind of trust doesn’t come from models alone. It comes from human-centered engineering that works directly with business stakeholders, understanding their expectations and optimizing the system around the kinds of burning questions they might ask. 

Where Snowflake Intelligence Goes Next 

While the engagement above focused on a single business domain, its success unlocked a much broader conversation. Once users experience natural-language access to data, they want it everywhere. 

That raises important questions for any enterprise moving into AI-powered analytics: 

  • Should one agent handle multiple domains, or should each domain get its own? 
  • How do we scale context engineering across dozens of datasets? What does governance look like when agents proliferate? 
  • How do we ensure consistency, accuracy, and trust at enterprise scale? 

This is where agent strategy and governance become as important as model configuration. And it’s where organizations increasingly look for seasoned partners who have navigated these patterns before. 

Bringing It All Together 

At Hakkoda, we don’t just help organizations explore exciting new Snowflake features. We help them operationalize those features and channel them into real business impact.  

From semantic modeling to Cortex configuration to governance frameworks, we bring the technical patterns and best practices that turn promising POCs into production-grade capability. 

Excited to start leveraging Snowflake Intelligence when it hits general or just looking to get your footing in the AI Data Cloud, let’s talk. 

Blog
November 18, 2025
Discover how SAP’s Business Data Cloud and Snowflake’s AI Data Cloud enable zero-copy data sharing, unified semantics, and governed bidirectional...
Blog
November 14, 2025
Learn how scalable AI use cases are shaping the next wave of innovation with six insights for retail, CPG, and...
Blog
November 13, 2025
See how governed data products in SAP and Snowflake improve reliability, safety, and storm response across utility and WAM operations.
Blog
November 10, 2025
Achieve faster, smarter retail allocation by uniting SAP data and Snowflake Intelligence for real-time, governed, and margin-driven decisions.

Ready to learn more?

Speak with one of our experts.